本书是普通高等院校理工科各专业本科“高等数学”课程的教材,分上、下两册进行编写。全书内容取材适当,逻辑清晰,重点突出,难点分散,通俗易懂,便于自学;每一章最后设置了“综合例题”一节,介绍各种重要的题型,博采众长的解题方法,这对开阔解题思路,激发学习兴趣,提高学生综合应用数学知识的能力将是十分有益的。本书自第一版出版以来,受到了广大读者和同行的认可。本次修订是在保持第一版的原书风格、体系与结构的基础上,根据读者使用的反馈意见,结合作者近些年的教学积累,对内容做必要的修改与补充,以使本书更进一步贴近读者,更好地体现教学基本要求。
肖筱南:厦门大学嘉庚学院信息科学与技术学院副院长,信息与计算科学系主任,教授,博士研究生导师,福建省高等学校教学名师,曾多次获得过省部、学校优秀教学成果奖,在国内外众多核心学术刊物发表学术论文139篇,出版著作或教材29部(包括合作)。林建华:厦门大学教授。高琪仁:厦门大学副教授。许清泉:厦门大学副教授。庄平辉:厦门大学教授。林应标:厦门大学副教授。
目录
第一章 函数、极限与连续
§1.1 初等函数
一、邻域
二、两个常用不等式
三、函数
四、初等函数
习题1.1
§1.2 数列的极限
一、数列
二、数列极限的定义
三、收敛数列的性质
四、收敛数列的四则运算法则
习题1.2
§1.3 函数的极限
一、函数极限的定义
二、函数极限的性质
习题1.3
§1.4 无穷小与无穷大
一、无穷小与无穷大的概念
二、无穷小的运算性质
习题1.4
§1.5 极限的运算法则
一、极限的四则运算法则
二、复合函数极限的运算法则
习题1.5
§1.6 极限存在准则 两个重要极限
一、极限存在准则
二、两个重要极限
习题1.6
§1.7无穷小比较
一、无穷小比较的概念
二、等价无穷小替代定理
习题1.7
§1.8 函数的连续性
一、函数的连续性
二、左、右连续
三、连续函数
四、函数的间断点
五、连续函数的运算
六、初等函数的连续性
习题1.8
§1.9 闭区间上连续函数的性质
习题1.9
§1.10 综合例题
一、函数
二、极限
三、连续性
第二章 导数与微分
§2.1 导数的概念
一、导数概念的引例
二、导数的定义
三、导数的几何意义
四、 可导性与连续性的关系
习题2.1
§2.2 求导法则与基本导数公式
一、导数的四则运算法则
二、反函数的求导法则
三、复合函数的求导法则
四、初等函数的导数问题
习题2.2
§2.3 高阶导数
一、高阶导数的概念
二、几个初等函数的n阶导数公式
三、高阶导数的求导法则
习题2.3
§2.4 隐函数与由参数方程确定的函数的导数相关变化率
一、隐函数的求导法则
二、对数求导法
三、由参数方程确定的函数的求导法则
四、相关变化率
习题2.4
§2.5 微分及其在近似计算中的应用
一、微分的概念
二、微分的几何意义
三、微分的四则运算法则与
基本微分公式
四、微分在近似计算中的应用
习题2.5
§2.6 综合例题
一、求分段函数与抽象函数的导数
二、已知某个函数可导,求相关的极限或确定常数
三、已知某个极限,求函数在某点处的导数
四、关于导数存在的充要条件的讨论
五、函数导数与微分的计算
第三章 微分中值定理与导数的应用
§3.1微分中值定理
一、罗尔中值定理
二、拉格朗日中值定理
三、柯西中值定理
习题3.1
§3.2 洛必达法则
一、00型未定式
二、∞∞ 型未定式
三、其他未定式
习题3.2
§3.3 泰勒公式
一、问题的提出
二、泰勒公式
三、几个常用初等函数的泰勒公式
习题3.3
§3.4 函数的单调性与曲线的凹凸性
一、函数的单调性
二、曲线的凹凸性与拐点
习题3.4
§3.5 函数的极值与最值
一、函数的极值
二、函数的最值
三、极值应用的举例
习题3.5
§3.6 函数图形的描绘
一、曲线的渐近线
二、函数图形的描绘
习题3.6
§3.7 曲率
一、弧微分
二、曲率及其计算公式
三、曲率半径与曲率圆
习题3.7
§3.8 综合例题
一、罗尔中值定理的推广
二、中值命题的证明
三、函数不等式与数值不等式的证明
四、利用洛必达法则、微分中值定理与泰勒公式求极限
五、利用导数讨论函数的性态
六、利用导数讨论方程的根
七、证明函数与其导数的关系
第四章 不定积分
§4.1 不定积分的概念与性质
一、原函数与不定积分
二、不定积分的运算法则与基本积分公式
习题4.1
§4.2 换元积分法
一、第一换元积分法(凑微分法)
二、第二换元积分法(代换法)
习题4.2
§4.3 分部积分法
习题4.3
§4.4 有理函数的不定积分
一、有理函数的不定积分
二 简单无理函数与三角函数的不定积分
习题4.4
§4.5 综合例题
一、与原函数概念有关的问题
二、用多种方法、技巧求不定积分
第五章 定积分
§5.1 定积分的概念与性质
一、定积分的概念
二、定积分的性质
习题5.1
§5.2 微积分基本定理
一、积分上限函数
二、微积分基本定理
习题5.2
§5.3 定积分的换元积分法和分部积分法
一、换元积分法
二、分部积分法
习题5.3
§5.4 反常积分与Γ函数
一、无穷限的反常积分
二、无界函数的反常积分
三、Γ函数
习题5.4
§5.5 综合例题
一、 有关定积分概念与性质的例题
二、 有关积分上限函数的例题
三、 有关定积分计算、证明的方法与
技巧的例题
第六章定积分的应用
§6.1 定积分在几何学中的应用
一、平面图形的面积
二、立体的体积
三、平面曲线的弧长
习题6.1
§6.2 定积分在物理学中的应用
一、变力做的功
二、液体压力
三、引力
习题6.2
§6.3 综合例题
第七章 常微分方程
§7.1 微分方程的基本概念
一、建立微分方程数学模型
二、微分方程的基本概念
习题7.1
§7.2 可分离变量的微分方程
一、可分离变量的微分方程
二、齐次方程
习题7.2
§7.3 一阶线性微分方程
一、一阶线性齐次微分方程的解法
二、一阶线性非齐次微分方程的解法
三、伯努利方程
习题7.3
§7.4 可降阶的高阶微分方程
一、y(n)=f(x)型的微分方程
二、不显含未知函数y的微分方程
三、不显含自变量x的微分方程
习题7.4
§7.5 二阶线性微分方程
一、二阶线性齐次微分方程解的结构
二、二阶线性非齐次微分方程解的结构
习题7.5
§7.6 二阶常系数线性齐次微分方程
习题7.6
§7.7 二阶常系数线性非齐次微分方程
一、f(x)=Pn(x)eμ x
二、f(x)=eαx[Pl(x)cosβx+Pn(x)sinβx]
习题7.7
§7.8 综合例题
一、一阶微分方程的求解
二、有关二阶微分方程解的例题
部分习题答案与提示